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Abstract: Wave absorbing structwres are widely used in harbour and offshore engineering. Breakwaters
provide protection for harbours and floating marina facilities. The flow characteristics on the seaward and
leeward sides of a structure are not only important for harbour protection, but also for the stability of the
structure. Breakwater design can significantly influence wave reflection, wave transmission, wave induced
forces and moments. The interaction between waves and the structure is a major concern of engineers in the
design of breakwaters and wave barriers. In this paper, an eigenfunction expansion, numerical model is
presented, which simulates wave interaction with a thin, vertical, double-walled, rigid wave barrier. The
barrier partially penetrates the water column from the water surface down. The mathematical analysis is
based on linear wave theory, supplemented by the appropriate external and internal boundary conditions to
determine the velocity poteniial throughout the flow domain. The model predicts the influence of various
wave barrier characteristics (such as wall penetration ratio and the spacing between two walls) on the
performance of the barrier over a broad range of water depths and wave conditions. The results from the
model include the reflection and transmission coefficients and relative amplitndes of the waves between the
two barriers. The main advantage of this model is that it allows the analysis of the temporal kinematics and
dynamics in the flow region. The present numerical solutions are compared with the experimental and
numerical results from the literafure.
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1. INTRODUCTION water surface 1o some depth below, over a broad

range of wave conditions.
Wave absorbing structures have been widely used

along shorelines, channel enirances, beaches and Approximate  analytical solutions of the
marings for long time. The primary function of transmission and reflection coefficients to this
wave barriers is to provide shelter by reducing the problem with infinite water depth can be found in
wave energy transmitted to the leeward side. The Srokosz and Evans [197%] and Newman [1974].
functional efficiency of these structures is These analytical solutions are based on
evaluated by calculating the reflection and irrotational, linear wave theory, Srokosz and
transrrission of waves. The interaction between Evans's [1979] wide-spacing approximation is
waves and the structure is a major concern of based on the assumption that the barriers are
engineers in the design of breakwaters and wave spaced sufficiently far apart for the local wave
barriers, Sometimes the appropriate design of field in the vicinity of one barrier not to influence
wave barriers can virtnally eliminate refiections the flow fGeld near the other barrier. The only
and give rise to a substantial reduction of impact interaction between the barriers g due to the
wave loads. As water depth increases, 3 wave propagating-wave terms  which occur in the
barrier that further penetrates the water column scattering problem for a single barrier. Newman's
becomes increasingly uneconomical, and a solution [1974] is applied to cases with small
subrnerged breakwater may be used instead. In separation between the plates and he assumed that
this study, a mathematical analysis is undertaken the fluid motion between the plates is a uniform
for predicting the performance of double, thin vertical osciliation. Stiassnie et al. {1986]
walled wave barriers that extend from above the conducted wave flume experiments to test the wide

spacing approximation analysis. Wu and Liu

2173



[1988] presented the method of matched
eigenfunction functions at the barriers fo find
mumerical solutions of the woansmission and
reflection coefficients for obliquely incident water
waves with two floating rectangular cylinders.

In this study, the numerical model of eigenfunction
expansion for double wall, thin wave barriers is
developed to expand the applications of the
analytical solutions mentioned above. The model
not only provides transmission and reflection
coefficients, but alse the spatial and temporal flow
field throughout the fluid domain. The theoretical
formulation of the problem is described in the
following section,

2. THEORETICAL FORMULATION

A regular, small amplitude, incident wave train of
height H and angular frequency ¢ propagates in
water of constant depth d past a double, thin
vertical breakwater as shown in Figure 1. The
origin of the coordinate system is taken at the still
water level at the location of the first barrier with
the x-axis horizonte! and the z-axis vertical and
pointing upwards. The fluid domain is divided
into three regions: Region I for x < 6, Region I for
O<x<bandregion I forx 2%,

inviscid and
is

The fluid is assumed to be
incompressible, and the {fluid motion
orotational. Its velocity potential @(x,z,1) is:

D(x,z,¢t) = Ref ¢(x,z)e "] (4

where Re denotes the real part of the complex

number, { = +/~ 1, wave angular frequency
o =2x/T, T = wave period. The fluid velocity
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Figure 1. Definition sketch of a double wall wave
barriers

The time-independent velocity potential ¢(x.z)
must satisty the following equations:
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Iass conservation in the flow region:
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Free water surface boundary condition:
At the water surface, the pressure p = 0. From the
Bernoulli equation,

(4)

The water surface level (z = 1) can be determined

from
R

B g d '

(3)
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Taking the derivative with respect to t on both

sides of Equation (5), we obtain
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where 01 represents the vertical fluid velocity v at
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the water surface, ie.
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Equation (8) is the free water surface boundary
condition.
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The energy associated with an incoming wave
which encounters a wave barrier will be partially
trapsmitied and reflected. The resulting wave
motion in region I consists of an incident and a
reflected wave while in region II, the wave motion
is due to transmitted and reflected waves and in
region I, the wave motion is due to transmitted
wave only. The general solution for the velocity
potential  satisfying the zhove conditions



{Equations (2), (3} and (8)) in each region can be
written as follows:

Region I (x<0}:
x| ik, 10"
by =Le™ + TR, (z)e (10

n=l
Region II (0<x<b):
A
¢y = Zf A2 (A, + B e Mty (11
n=|

Region I (x>b):

Y

B = T,1,(z) e (12)
n=i

where

1) =- igH coshlk, (d +z)] (13)

2 coshik,d)
forn=1,2, ...... N
ky = 2n {wave number), L = wave length (m), H =

incident wave height (m), d = water depth {m) R,,
Ay, By and T, = complex coefficients describing
the dimensionless amplitude and phase of the
progressive {n=1) and evanescent wave modes
(r>1), N-1= oumber of evanescent modes. The
first term represents the incident wave, and the
summation terms represent the scattered wave
modes. The velocity potential of the actual
incident progressive wave is described by:

@i =Ilei(kpc*0t) (14)
The reflection and transmission coefficients for the
progressive wave modes are given by:

K, =& K, =]|T] (15)

The k, in Equations {10) to (14) are determined
from the following dispersion equation:

o = gk, tanh(k,d)

where k, is the first real positive root, which is the
wave number of a Hnear progressive wave number,
k, (p>1) are an infinite set of positive purely
tmaginary roots corresponding o evanescent
waves travelling in both directions away from the
barrier.

The velocity potentials §,, &, and ¢; must satisfy
the internal boundary conditions at the wave

barrier.

Internal Boundary Conditions

(1} No horizontal flow normal to the barrier,

%:%:0, at x = 0 and ~w<z<0

ax ax

9_@%:%:0, at x = b and -w<z<{ (17)
ax o

{2) Applying pressure continuity below each
barrier
@ =¢, atx=0, -d<z<-w

¢, =¢, atx=b-d<z<-w (18)

and velocity continuity

% = %, atx ={), -d<z<-w

ax ax
OF: _ 0% aix=b, -dezcow (19)
Ox ox

Now we are going to find four expressions to
represent the boundary conditions in Equations
{17} to (19). The mixed boundary condition can be
defined as a function Gy(=).

B =0, x :
Giiz} = s _ o
¢2,x“¢!,x—07 x=0~d<sz<~w

From the definitions of velocity potential ¢; ¢, and
ts, the split function G(2) can be described as

N
kd{z}~ Eikan[”(Z) =0,
=
forx=0,-w<z<0

Gz) = 4 by
—h{z)+ Tkl (z) %xz Ay - By } 0,
n=i

for x=0,-d<z <-w
2D

In the expression G{z) 0, the complex
coefficients R, A, and B, are unknown and need
to be determined. Once all these values are solved,
the solution of the velocity potential is found.
G ((z) satisfies a certain integral equation. G(z) =
0 can be satisfied along the whole water column by
employing the orthogonality properties of the
depth-dependent eigenfunctions I(z). This means
integrating the product of Gy(z) and the depth-
dependent eigenfunctions 1(z) with respect to z
and setting the result to zero. Elimination of z
from the resulting integral equation then makes the
solution for R,, A, and B, possible. Therefore,

0 - 0

J{IG! (zHpi2)dz = IdGl () (2)dz + ,{G‘!(Z)!m (z)dz
i - v

-

G
= [ty =)y (2)dz + (@l (2)dz =0

~d -

(22}



Equation (22) can be recast in matrix form as a set
of linear equations

z "’“Rﬂ +Z ,,,,,A,, +z HE !Iz m= }; 2’ N
n=l
(23)
where Com = by fpm(—d;=w)
i
Dy = “knel nbj;zm (=d,—w},
Enm = ky fum{(—d,—w) ~ by Frap (w0
Fn = B Sy Cdywh = by f (w0} 5
ﬂn
Fuden )= [, (2)d
From pressure continuity at x=0, -d<z<-w, §; = 4o,

we can obtain the second boundary condition
function Gx{z).

. ¢2‘x*0 x=0,-w<z<0
Gafz) = . _
i —d)=0  x=0, ~dszs~

o7

N .

Lkl (:‘}{A,, - Bne,;cms]x 0

n=l
Gy(z) = for x=0,-w<z<0

n=i

forx=0~d<z%

—

(24)
Following a similar procedure applied to Gy(z)
previously, we employ the orthogonality properties
of the depth-dependent eigenfunctions I (z) to
eliminate z from G;(z). Therefore,

—w

o N ik, b
=k l\(2)+ & E (2R + Ay + Be =0,

jc (z)1,(z)dz = jG (), (z)dz + jG (2} (z)dz =0

~d
We obtain the second matrix form of linear
equations containing B, A, and B, as

—w

m=1,2 ..N

Z man +Z( z/f?v+ZHnrern O ?

L

(25)
where Gfmz = klfnm (_df'w) + iknfnm(_wzo) ’
Hym = kﬁe[k”bfmn("’“d’“‘”) - ikrieiknbfmn(”w’g} »

Lim = =~k Lo {=d,=W) s Oy = Iy fla (—d,~w)

From the mixed internal boundary conditions at
the second barrier, x = b, we can form the third and
fourth boundary condition functions:
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X=h,~w=z<0
X=b,~d=<z

[ &
@)= 1@; %¢2ﬁx =

— W
(26)

b, ~w=z<0

[ =0
“E) m{kz(@ ~4)=0

~d <z g-w
(27)

From Equations (20) and (27), we obtain the

following matix form of linear equations

contammg unknown coefficients R, A, By and T,

x=bh,

Z A 4*» +Z~.ﬂmB +E mta T (28)
Z m‘"lﬂ -E-Z rmrBﬂr +Z rim nT (29)
where

B = kﬂg{knb [fnm (a0} S (-—d,-—w)],

S H/) 3

Oy = =Jey Fam D)+ Ey f (-,

. - T
Sum = kpfum(=d,~w), Uy = 'klel " L~ W)
Vﬂm lfnm{ ~d )

W = Iknjnm (=w.0) + &y frm{(—d,—w)

Solving the system of linear complex equations
(233, {25), (28) and {29) yields the complex
amplitudes Ry, A, Byand Ty {n =1, .. N}. The
reflection and transmission coefficients are given
by Equation {15).

3. SIMULATION RESULTS AND
ANATVEIS
Eq.(23), (25), (28) and {(29) constitute 4N

simultaneous equations for the unknown complex
coefficients R, A, Boand T, = 1, 2, ...N).
These equations were solved using  the
mathematical software MAPLE V by Waterloo
Inc. {Ellis et al, 1997]. We conducted numerical
experiments for (i} closely spaced barriers with
b = 0.2w; (ii) widely spaced barriers, where the
spacing ratio is b = 3w.

Close barrier spacing cases (/L= 0,01~ 0,05}

The limiting case of close spacing for two barriers
is one wave barrier. In order to guarantee the
accuracy of the present method, the numerical tests
for the close spacing case such as b=0.2w was
carried out and the results were compared with the
analytical and numerical solutions from the
literature for a single barrier. The test conditions
were water depth d = 20m, barrier penetration ratio
w/d = 0.1, distance between two barriers b = 0.2w
and wave period T = 2.2 ~ 3.2s. The relative
barrier spacing b/L varies from (.01 ~ 0.05 and



&I, = 048 ~ 2.55. The present predicted
transmission and reflection coefficients with 1 and
10 modes are shown in Figures 2 and 3. Also
shown for comparison are the corresponding
values of K; and K, from the modified power
transmission  theory (MPTT) [Kricbel and
Bollmann, 1996} and the eigenfunction solution
(N=20) for the single barrier [Tillman et al., 2001].
These figures give credence to the accuracy of the
present method. For long wavelengths or small
barrier spacings the transmission coefficient is
mmcreased relative to the single barrier values,
whereas for short wavelengths or large barrier
spacing the transmission coefficient is reduced by
the presence of the second barrier.
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Figure 2. Transmuission coefficient for incident
waves impinging on a double wall barrier with
“wid =0.1, b/w = (.2,
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Figure 3. Reflection coefficient for incident waves
impinging on a double wall barrier with
wid =0.1, biw= 0.2,

Wide barrier spacing cases (/L= 0.13~0.70)

Numerical results were obtained for the same
geometry as in an experiment by Stiassnie ef al.
(1986} with d=0.775m, w=0.2m, penetration ratio
w/d = 0.258. By changing the wave period T from
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0.74 10 2.0 seconds, the ratio b/L is in the range of
0.13~ 0.7 and relative water depth /L varies from
0.3 {intermediate water) to 1.3 (deep water). The
comiparison between current numerical results for
the predicted iransmission and reflection
coefficients with the number of medes N=1, 3 and
10 and Stiassnie’s experimental data [Stiassnie et
al,, 1986] is shown in Figures 4 and 5. It indicates
that the eigenfunction solution approaches the
experimental results with increasing number of
modes. There is reasonable agreement between
the mnumerical results with N=10 and the
experimental data. The results show that for long
wavelengths or small barriers spacings the
transmission coefficient is higher, whereas for
short wavelengths or large barriers spacings the
transmission coefficient is lower.
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Figure 4, Transmission ceefficient for incident
waves impinging on a double wall barrier with
w/d=0.258, biw=3.
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Figure 5. Reflection coefficient for incident waves
impinging on a double wall barrier with
w/d=0.258, biw=3,

The present numerical model is able to provide the
overall flow profile for the fluid domain (see
Figure 6). The free water surface elevation versus
time on both sides of the wave barriers is plotted in



Figure 7. The graph shows wave amplitudes as
well as phase shifts on both sides of the wave
barriers.  This information is of particular
importance in engineering design for the
calculation of the forces and moments on the wave

barriers.

5,
Figure 6. Water surface profile, velocity potentiai
and flow field for the case: d = 0.775m, w = 0.2m,
w/d = 0258, b=73w, T= 115, d/L = 0415
b/ =0.321

Figure 7. Free water surface against time on bath
sides of the wave barriers for the same case
itlustrated in Figure 6:
d=0.775m, w=0.2m, w/d = 0258, = 3w,
T=1.1s, &L= 0415 L =0321.

- - -1 at x=0, at the front of the bamrier No.1;
4+ 15{x=0}, at the back of the barrier No.1;
U0 n,(x=b), at the front of the barrier No.2Z;
— 13{x=b), at the back of the barrier No.2.

4. CONCLUSIONS

The method of eigenfunction expansion is
developed to examine the performance of two thin
vertical wave barriers. The numerical results
reported in this paper indicate that the present
eigenfunction expansion method works well for

2178

the thin, double wall wave barrier configuration
provided about ten wave modes are included in the
analysis. The experimental data and
numerical/anatytical selutions from the literature
generally agree with this numerical model
approach.  While the transmission coefficient
decreases for long wavelengths or large barrier
spacing, the reflection coefficient increases. For
short wavelengths or large spacing between
barriers, the breakwater system with two vertical
barriers shows an improvement over the system
with one vertical barrier. The present model
demonstrates its capacity to reproduce and enable
ammation of the water motion in and around the
double wall wave barrier. It provides important
information for the calculation of forces and
momenis on the wave barriers in engineering
design.
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